Utrecht, the Netherlands
Monday - Friday 08:00-18:00
+31615533345

Publications

HomePublications

Cancer on a chip

A

A major challenge in studying tumor cell invasion into its surrounding tissue is to identify the contribution of individual factors in the tumor microenvironment (TME) to the process. One of the important elements of the TME is the fibrous extracellular matrix (ECM) which is known to influence cancer cell invasion, but exactly how remains unclear. Therefore, there is a need for new models to unravel mechanisms behind the tumor-ECM interaction. In this article, we present a new micro fabrication method, called selective curing, to integrate ECM-mimicking layers between two micro fluidic channels. This method enables us to study the effect of 3D matrices with controlled architecture, beyond the conventionally used hydrogels, on cancer invasion in a controlled environment. As a proof of principle, we have integrated two electrospun Polycaprolactone (PCL) matrices with different fiber diameters in one chip. We then studied the 3D migration of MDA-MB-231 breast cancer cells into the matrices under the influence of a chemotactic gradient. The results show that neither the invasion distance nor the general cell morphology is affected significantly by the difference in fiber size of these matrices. The cells however do produce longer and more protrusions in the matrix with smaller fiber size. This micro fluidic system enables us to study the influence of other factors in the TME on cancer development as well as other biological applications as it provides a controlled compartmentalized environment compatible with cell culturing.

A

Most cancer deaths are not caused by the primary tumor, but by secondary tumors formed through metastasis, a complex and poorly understood process. Cues from the tumor microenvironment, such as the biochemical composition, cellular population, extracellular matrix, and tissue (fluid) mechanics, have been indicated to play a pivotal role in the onset of metastasis. Dissecting the role of these cues from the tumor microenvironment in a controlled manner is challenging, but essential to understanding metastasis. Recently, cancer-on-a-chip models have emerged as a tool to study the tumor microenvironment and its role in metastasis. These models are based on microfluidic chips and contain small chambers for cell culture, enabling control over local gradients, fluid flow, tissue mechanics, and composition of the local environment. Here, we review the recent contributions of cancer-on-a-chip models to our understanding of the role of the tumor microenvironment in the onset of metastasis, and provide an outlook for future applications of this emerging technology.

A

E-cadherin is a cell-cell adhesion protein that plays a prominent role in cancer invasion. Inactivation of E-cadherin in breast cancer can arise from gene promoter hyper methylation or genetic mutation. Depending on their E-cadherin status, breast cancer cells adopt different morphologies with distinct invasion modes. The tumor microenvironment (TME)can also affect the cell morphology and invasion mode. In this paper, we used a previously developed micro fluidic system to quantify the three-dimensional invasion of breast cancer cells with different E-cadherin status, namely MCF-7, CAMA-1 and MDA-MB-231 with wild type, mutated and promoter hyper methylated E-cadherin, respectively. The cells migrated into a stable and reproducible micro fibrous polycaprolactone mesh in the chip under a programmed stable chemotactic gradient. We observed that the MDA-MB-231 cells invaded the most, as single cells. MCF-7 cells collectively invaded into the matrix more than CAMA-1cells, maintaining their E-cadherin expression. The CAMA-1 cells exhibited multicellular multifocal infiltration into the matrix. These results are consistent with what is seen in vivo in the cancer biology literature. In addition, comparison between complete serum and serum gradient conditions showed that the MDA-MB-231 cells invaded more under the serum gradient after one day, however this behavior was inverted after 3 days. The results showcase that the microfluidic system can be used to quantitatively assess the invasion behavior of cancer cells with different E-cadherin expression, for a longer period than conventional invasion models. In the future, it can be used to quantitatively investigate effects of matrix structure and cell treatments on cancer invasion.

 

Intestine on a chip

A

The majority of intestinal in vitro screening models use cell lines that do not reflect the complexity of the human intestinal tract and hence often fail to accurately predict intestinal drug absorption. Tissue explants have intact intestinal architecture and cell type diversity, but show short viability in static conditions. Here, we present a medium throughput microphysiological system, Intestinal Explant Barrier Chip (IEBC), that creates a dynamic microfluidic microenvironment and prolongs tissue viability. Using a snap fit mechanism, we successfully incorporated human and porcine colon tissue explants and studied tissue functionality, integrity and viability for 24 hours. With a proper distinction of transcellular over paracellular transport (ratio >2), tissue functionality was good at early and late timepoints. Low leakage of FITC–dextran and preserved intracellular lactate dehydrogenase levels indicate maintained tissue integrity and viability, respectively. From a selection of low to high permeability drugs, 6 out of 7 properly ranked according to their fraction absorbed. In conclusion, the IEBC is a novel screening platform benefitting from the complexity of tissue explants and the flow in microfluidic chips.

Microphysiological systems have potential as test systems in studying the intestinal barrier, in which shear stress is critical for the differentiation of Caco-2 cells into enterocytes. The most commonly used in vitro gut model for intestinal barrier studies is based on trans-well cultures. Albeit useful, these culture systems lack physiological shear stress which is believed to be critical for the differentiation of Caco-2 cells into enterocytes and to form tight monolayers. Conversely, organ-on-chip models have presented themselves as a promising alternative since it provides cells with the required shear stress. To this end, a novel biocompatible 3D-printed microfluidic device was developed. In this device, Caco-2 cells were seeded under physiologically-relevant uni-directional shear stress and compared to cells cultured under gravity-driven flow. Using numerical studies, the flow rate that corresponds to the required shear stress was calculated. Experimental tests were conducted to verify the effect of this on cell differentiation. The experiments clearly showed an enhancement of cell differentiation potential in a unidirectional physiologically-relevant pump-driven flow system (PDFS) as opposed to the simpler bidirectional gravity-driven flow system (GDFS). Additionally, computational modeling of an adapted design confirmed its ability to supply all cells with a more homogeneous shear stress, potentially further enhancing their differentiation. The shear stress in the adapted design can be well-approximated with analytic methods, thus allowing for efficient predictions for all parameter values in the system. The developed novel microfluidic device led to the formation of a tighter monolayer and enhanced functional properties of the differentiated Caco-2 cells, which presents a promising tool for preclinical in vitro testing of drugs in an animal-free platform.

A

Over the past decade, microfluidic intestine-on-a-chip models have been emerging as a novel platform to study intestinal function in health and disease. These microphysiological systems surpass conventional in vitro intestinal model systems, as they add microenvironmental context in the form of mechanical cues or by the incorporation of multiple cell types and/or gut microbiome, thereby better reflecting intestinal architecture and physiology. This review summarizes the current intestine-on-a-chip models with a distinction between cell- or organoid-based models and models that apply ex vivo tissue biopsies, as well as describing the progress and hurdles to overcome when applying intestine-on-a-chip models to study host-microbe interactions and intestinal diseases.

 

Joint on a chip

A

Given the multi-tissue aspects of osteoarthritis (OA) pathophysiology, translation of OA susceptibility genes towards underlying biological mechanism and eventually drug target discovery requires appropriate human in vitro OA models that incorporate both functional bone and cartilage tissue units. Therefore, a microfluidic chip is developed with an integrated fibrous polycaprolactone matrix in which neo-bone and cartilage are produced, that could serve as a tailored human in vitro disease model of the osteochondral unit of joints. The model enables to evaluate OA-related environmental perturbations to (individual) tissue units by controlling environmental cues, for example by adding biochemical agents. After establishing the co-culture in the system, a layer of cartilaginous matrix is deposited in the chondrogenic compartment, while a bone-like matrix is deposited between the fibers, indicated by both histology and gene expression levels of collagen type 2 and osteopontin, respectively. As proof-of-principle, the bone and cartilaginous tissue are exposed to active thyroid hormone, creating an OA disease model. This results in increased expression levels of hypertrophy markers integrin-binding sialoprotein and alkaline phosphatase in both cartilage and bone, as expected. Altogether, this model could contribute to enhanced translation from OA risk genes towards novel OA therapies.

 

Multi-organ on a chip

A

Chronic kidney disease (CKD) typically appears alongside other comorbidities, highlighing an underlying complex pathophysiology that is thought to be vastly modulated by the bidirectional gut–kidney crosstalk. By combining advances in tissue engineering, bio fabrication, micro fluidics, and biosensors, micro physiological systems (MPSs) have emerged as promising approaches for emulating the in vitro interconnection of multiple organs, while addressing the limitations of animal models. Mimicking the(patho)physiological states of the gut–kidney axis in vitro requires an MPS that can simulate not only this direct bidirectional crosstalk but also the contributions of other physiological participants such as the liver and the immune system. We discuss recent developments in the field that could potentially lead to in vitro modeling of the gut–kidney axis in CKD.

A

The development of new medicines suffers from attrition, especially in the development pipeline. Eight out of nine drug candidates entering the clinical testing phase fail, mostly due to poor safety and efficacy. The low predictive value of animal models, used in earlier phases of drug development, for effects in humans poses a major problem. In particular, drug disposition can markedly differentiate in experimental animals versus humans. Meanwhile, classic in vitro methods can be used but these models lack the complexity to mimic holistic physiological processes occurring in the human body, especially organ-organ interactions. Therefore, better predictive methods to investigate drug disposition in the preclinical phase are needed, for which recent developments in multi-organ-on-chip methods are very promising. To be able to capture human physiology as good as possible, multi-organ-on-chips should feature: 1) human cells endogenously expressing main transporters and metabolizing enzymes; 2) organ models relevant for exposure route; 3) individual organs-on-chip connected in a physiologically relevant manner; 4) a tight cellular barrier between the compartments; 5) organ models properly polarized in 3D; 6) allow for sampling in all major compartments; 7) constructed from materials that do not absorb or adsorb the compound of interest; 8) cells should grow in absence of fetal calf serum (FCS) and Matrigel; 9) validated with a panel of compounds with known characteristics in humans; 10) an integrated computer model translating concentrations to the human situation. Here, an overview of available systems is presented and the difficult route towards a fully validated system is discussed.

A

 

Others

A

Microfluidic devices allow the manipulation of fluids down to the micrometer scale and are receiving a lot of attention for applications where low volumes and high throughputs are required. In these micro channels, laminar flow usually dominates, which requires longresidence times of the fluids, limiting the flow speed and throughput. Here a switchable passive mixer has been developed to control mixing and to easily clean microchannels. The mixer is based on a photo responsive spiropyran based hydrogel of which the dimensions can be tuned by changing the intensity of the light. The size‐tunable gels have been used to fabricate a passive slanted groove mixer that can be switched off by light allowing to change mixing of micro fluidics to non‐mixed flows. These findings open new possibilities for multi‐purpose micro fluidic devices where mixers and valves can be tuned by light.

×